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Abstract 

Many ICT-based future industrial applications will 
require the localization of machines, devices or even 
workers. This work presents the experimental 
implementation, evaluation and optimization of an 
RSSI-based localization solution using IEEE 802.15.4 
wireless sensor networks. The localization accuracy is 
analysed under different densities of deployed 
reference nodes. The paper also proposes a simple 
optimization process that helps improving the 
localization accuracy.  

1. Introduction 

The FASyS project (Absolutely Safe and Healthy 
Factory) [1] was established to develop a new factory 
model aimed at improving the health and safety of its 
workers. To this aim, the project is designing new ICT 
solutions to assist in the detection of risk situations. In 
particular, the project is working in designing safety 
prevention systems using low cost and low power 
consumption IEEE 802.15.4-based Wireless Sensor 
Networks (WSN) for real-time monitoring. For 
example, deploying mobile WSN motes at moving 
vehicles and workers can help detecting possible risks 
of collisions. To this aim, wireless communications 
need to be complemented with indoor location 
information.  

Several indoor localization systems using wireless 
technologies (e.g. RFID, Bluetooth or UWB) have 
been proposed in the literature [2]. In order to avoid 
the deployment of different nodes for wireless 
communications and localization, this study focuses 
on exploiting IEEE 802.15.4 WSN motes for indoor 
localization. Localization solutions exploiting wireless 
signals calculate the position of the target node by 
estimating the distance between the target node and 
several reference static nodes. In particular, the 
distance between a pair of nodes is estimated from the 
Received Signal Strength (RSS) of exchanged packets. 
For example, the algorithms proposed in [3] and [4] 
estimate the distance between two nodes through using 
the transmitted packets’ RSS indicator (RSSI). The 

proposals apply a non-parametric method known as 
fingerprinting. This method first performs a calibration 
stage generating a database with the RSSI levels and 
distances between each reference node and each 
possible position in the deployment area. The position 
of the target node is then estimated by comparing the 
RSSI measured by this node, and stored values (RSSI 
and distances) in database. Other proposals, e.g. [5] 
and [6], use for their localization estimation the 
knowledge of the propagation model that relates the 
measured RSSI with the distance between two nodes 
through a calibration stage. These localization 
parametric methods are not robust against changes in 
the transmission or propagation conditions, and 
require a costly calibration. On the other hand, the 
proposal in [7] estimates the distance between a target 
node and the reference nodes using the measured RSSI 
levels from the packets transmitted by the target node 
and received at the reference nodes, and a model 
relating RSSI levels and distances. The RSSI-distance 
model is parameterized using only reference nodes to 
avoid the costly calibration during deployment that 
characterized the other methods. In addition, the 
technique allows for periodic parameterization updates 
that increase the robustness against changes in the 
transmission or propagations conditions. In this 
context, this paper reports the implementation and 
experimental evaluation of an RSSI-based indoor 
localization solution using IEEE 802.15.4 nodes. The 
conducted study complements related literature that 
generally lacks from a hardware experimental 
deployment that evaluates the localization accuracy 
under different operating conditions, e.g. different 
node densities.  

2. Indoor localization system 

Figure 1 shows the architecture of the implemented 
localization system using distributed IEEE 802.15.4 
WSN nodes. The system includes target nodes 
(attached to workers in the case of the FASYS project), 
static reference nodes deployed to support the 
localization, and a coordinator node. The coordinator 
node is in charge of managing the WSN, and also 
implements and executes the localization algorithm.  
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Figure 1. Localization system architecture. 

The localization algorithm implemented at the 
coordinator node executes first a distance estimation 
phase and then a multilateration one (Figure 2). During 
the distance estimation phase, the algorithm estimates 
the distance between a target node and all reference 
nodes based on the RSSI of the packets received at 
each reference node from the target node (e.g. link A in 
Figure 1). To calculate the relation between distances 
and RSSI levels, the dynamic parameterization method 
proposed in [7] is applied. Based on the estimated 
distance between the target node and the reference 
nodes, the position of the target node is calculated 
using the multilateration method proposed in [8]. The 
multilateration method has been selected due to its 
good computational cost-accuracy trade-off [2]. 

Figure 2. Implemented localization algorithm. 

2.1. Distance estimation 
The distance between a target node and the 

reference nodes is estimated using the RSSI level of 
packets transmitted by the target node and received at 
each reference node, and the RSSI level-distance 
model obtained through the parameterization method 
proposed in [7]. This method dynamically relates RSSI 
levels and distances using the RSSI levels of packets 
exchanged between reference nodes (e.g. link B in 
Figure 1). It is important noting that the distance 
between static reference nodes is known. 

Let N represent the number of deployed reference 
nodes. The implemented dynamic parameterization 
method defines a NxN matrix D with dij referring to the 
Euclidean distance between references node i and j,   
i=1,…,N and j=1,…,N. Similarly, an NxN matrix S is 
also defined with RSSIij being equal to the RSSI level 
of packets transmitted by reference node j and received 
at the reference node i. It is important noting that while 
D is constant for a given system deployment, S is 
periodically updated with the objective to dynamically 
adapt the RSSI-distance relation to possible changes in 
the transmission or propagation conditions. The 

relation between D and S is given by TSD )log(  [7], 
where T is an NxN matrix calculated as 

1)()log(  TT SSSDT , where ST is the transpose matrix 
of S. The value of T can be calculated using the least 
squares method [7]. 

Once the relation between RSSI levels and 
reference distances is determined, the distance 
between a target node and the reference nodes can be 
estimated by collecting the RSSI levels of packets 
transmitted by the target node and received at each 
reference node. If ŝ  is a N-dimensional column vector 
with the RSSI levels of the packets transmitted by the 
target node and received at each reference node, the 
distance between the target node and each of the 
reference nodes can be computed as  sTd ˆexpˆ  , 

where d̂  is a N-dimensional column vector with the 
distance values. 

2.2. Multilateration 
The implemented multilateration method estimates 

the location of a target node p̂ = (x, y, z) using the 

estimated distance to each reference node d̂  and the 
location of each reference node expressed as pi = (xi, 
yi, zi), with 1iN. In particular, the location of the 
target node is computed as the intersection point of the 
spheres centred at each reference node pi and with 
radius equal to the distance to the target node 

id̂ . In 

this context, four different and non collinear reference 
nodes are at least required to provide a target node 
location. Since the accuracy of the estimated distances 
can be affected by noise and propagation radio effects 
(path-loss, shadowing, multi-path, etc.), the spheres 
might not always intersect at one single point. To 
solve this problem, the least squares method is applied 
[8], and the solution can be expressed as:  

  bHHHp TT 1
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where H and b are expressed as: 
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with Ki=xi
2 + yi

2+ zi
2. 

3. Experimental evaluation  

3.1. Testbed 
The WSN deployed to evaluate the localization 

accuracy consists of MEMSIC IRIS motes working in 
the 2.4GHz frequency band. These motes were selected 
due to their reduced cost, low power consumption, and 
good performance-efficiency trade-off in industrial 
environments [9]. The IRIS motes implement the IEEE 
802.15.4 PHY and MAC layers. The devices are 
characterised by a maximum data rate of 250 kbps, a -



91dBm receiver sensitivity, and a maximum RF output 
power of 3dBm. The target and reference nodes are 
IRIS devices powered by batteries and configured as 
routers. The coordinator node is an IRIS mote 
configured as a network coordinator that forwards to a 
PC through a USB connection the packets received. In 
the PC, the received information is processed to be 
used by the localization algorithm implemented using 
Java on an OSGI (Open Service Gateway Initiative) 
application server. 

The omni-directional antennas mounted on the IRIS 
motes were characterized in an anechoic chamber. The 
obtained radiation pattern showed gain variations of up 
to 10dB for different radiation angles. In order to 
reduce the localization error introduced by these gain 
variations, the antenna mounted in the IRIS mote has 
been replaced by Antenova’s Titanis 2.4 GHz Swivel 
SMA antenna whose radiation pattern is more uniform. 
The Antenova antennas have been connected to the 
IRIS motes through an adapter cable with loss below 
2dB in the 2.4GHz frequency band. Finally, the 
complete reference and target nodes (IRIS mote, cable 
and Antenova antenna) used in the experiments have 
been characterized in an anechoic chamber to verify its 
gain uniformity for transmission and reception angles. 
Gain deviations between different measured angles 
were lower than 3dB for all devices. 

3.2. Evaluation scenarios 
The performance of the implemented localization 

algorithm has been evaluated in the two scenarios 
depicted in Figure 3. In both scenarios, only one target 
node is deployed at different locations. Each scenario 
considers a different density of reference nodes: 9 
reference nodes are uniformly distributed in an area of 
100m2 (high node density) and 200m2 (low node 
density) respectively. The target node is located at each 
test point depicted in Figure 3 for 90 seconds, with its 
location being computed every second. 

Test point Reference node  
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Figure 3. High and low density scenarios. 

3.3. Localization performance 
Figure 4 shows the cumulative function distribution 

(CDF) of the localization error for the two scenarios. 
The localization error is computed as the difference 
between the position of the target node estimated with 
the localization algorithm and its real position. The 
CDFs are obtained using the localization error obtained 
at all test points depicted in Figure 3, and calculating 

the position using the information from all reference 
nodes deployed. Figure 4 shows that the maximum 
localization error for 90% of the performed estimations 
performed in the high density scenario is 2.2m; this 
value decreases to 1.1m when analyzing the 70% of the 
estimations (a reduction factor of 50%). Under a lower 
density of reference nodes, the localization error 
increases to 4.5m and 3.7m for the 90% and 70% of the 
localization estimations respectively. Whether these 
accuracy levels are sufficient or not, strongly depends 
on the target applications.  
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Figure 4. CDF of the localization error.  

Figure 5 depicts the average RSSI levels (circles) 
measured at the reference node 1 from packets 
transmitted by the other reference nodes in the low 
density scenario. The figure also shows the 5 and 95 
percentiles (vertical bars). The depicted data shows that 
the average RSSI level of packets transmitted by 
reference node 7 is 5dB higher than the RSSI levels 
received from the reference node 2, although both 
nodes are separated by the same distance from 
reference node 1. In addition, the figure shows that the 
reference node 1 measured lower RSSI levels from the 
farthest reference nodes. It is also important 
highlighting that the higher the distance between 
reference nodes, the higher the RSSI variance 
experienced at the receiver node; a difference between 
the 5 and 95 percentile equal to 10 and 15dB is 
experienced for packets transmitted by nodes separated 
20 and 22m from the target node respectively (nodes 3, 
6 and 9), while only a 5dB variance is perceived for 
closer nodes.  
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Figure 5. RSSI levels measured at 
reference node 1 from packets 
transmitted by the other reference nodes. 



3.4. Localization optimization 
The previous results have shown that distant 

reference nodes are characterised by a lower RSSI and 
higher RSSI variance, which can influence the 
localization accuracy. To analyse such influence, an 
optimized version of the localization algorithm has 
been implemented that only uses the four reference 
nodes that measure better RSSI levels from the packets 
transmitted by the target node. It is important noting 
that the multilateration scheme requires at least 
information from four nodes to compute the target 
node’s position. Figure 6 compares the CDF of the 
localization error when considering the original 
localization algorithm and its optimization. The 
obtained results show that the optimized algorithm 
reduces the maximum localization error obtained for 
90% of the tests by a 45% factor (from 2.2m to 1.3m) 
in the case of the high density scenario. On the other 
hand, the reduction factor for 90% of the tests is just 
13% (from 4.4m to 3.7m) in the case of the low density 
scenario. The performance for this scenario is 
significantly improved when looking at the 70% of the 
performed tests: the reduction factor is equal to 50% 
(from 3.6m to 1.8m), resulting in a localization 
accuracy similar to that achieved in the high density 
scenario.  
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Figure 6. CDF of localization error for the 
original and optimized algorithms.  

Although [7] stated that a high number of reference 
nodes could improve the localization estimation 
accuracy, the results presented in this study have 
experimentally demonstrated that the high RSSI 
variance for remote reference nodes could decrease the 
localization accuracy. In this context, the optimum 
number of reference nodes to be considered in the 
localization computation needs to be carefully studied 
in further works and for each deployment scenario. 

4. Conclusions 

This work presents the experimental implementation 
and evaluation of an RSSI-based localization solution 
using IEEE 802.15.4 WSNs. The conducted evaluation 
has shown that the localization accuracy can be 
improved through the increase of the density of 
reference nodes. Whether the localization accuracy is 
sufficient or not in lower density scenarios strongly 
depends on the target applications. In any case, the 
experimental analysis has also shown that the 
localization accuracy can be significantly improved, in 
particular for low density scenarios, when considering 
for the localization computation the information 
received from the four reference nodes characterised by 
best RSSI levels. 

The authors are currently designing and 
implementing an additional iterative particle filter to 
help tracking mobile target nodes. 

Acknowledgements 

This work has been partly funded by the Spanish 
Ministerio de Ciencia e Innovación through the CENIT 
Project FASyS (CEN-20091034).  

References 

[1] FASyS project website: http://www.fasys.es/en/. 
[2] Y. Gu, et. al, “A Survey of Indoor Positioning Systems 

for Wireless Personal Networks”, IEEE 
Communications surveys & tutorials , vol. 11, no 1, 
2009. 

[3] S.-Y. Lau, et. al, “A measurement study of zigbee-
based indoor localization systems under RF 
interference”, Proc. of 4th ACM international 
workshop on Experimental evaluation and 
characterization, pp. 35–42, 2009. 

[4] M. D’Souza, et. al, “Wireless localisation network for 
patient tracking”, Proc. of ISSNIP,  pp. 79 –84, 2008. 

[5] X. Li, et. al, “Collaborative localization with received-
signal strength in wireless sensor networks,” IEEE 
Transactions on Vehicular Technology, vol. 56, no. 6,  
pp. 3807–3817, 2007. 

[6] R. Bader, et. al, “BigNurse: A Wireless Ad Hoc 
Network for Patient Monitoring,” Proc. IEEE in 
Pervasive Health, pp. 1-4, 2006. 

[7] H. Lim, et. al, “Zero-Configuration, Robust Indoor 
Localization: Theory & Experimentation”, Proc. IEEE 
International Conference on Computer 
Communications (INFOCOMM), pp.1-12, 2006 

[8] A. Moragrega, et al, “Performance analysis of 
cooperative and range based localization algorithms for 
Zigbee and 802.15.4a Wireless Sensor Networks”, 
Proc. IEEE Symposium on Personal, Indoor and 
Mobile Radio Communications (PIMRC), pp. 1996-
2001, 2010. 

[9] M. Sepulcre, et al, “Wireless connectivity for mobile 
sensing applications in industrial environments”, Proc. 
IEEE Symposium on industrial Embedded Systems 
(SIES), pp. 111-114, 2011. 


